Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Proteomics Clin Appl ; 16(6): e2100100, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2047908

ABSTRACT

PURPOSE: Acute phase reactants (APRs) play a critical role in inflammation. The difference in their physiological functions or the different dynamic ranges of these proteins in plasma makes it difficult to detect them simultaneously and to use several of these proteins as a tool in clinical practice. EXPERIMENTAL DESIGN: A novel multiplex assay has been designed and optimized to carry out a high-throughput and simultaneous screening of APRs, allowing the detection of each of them at the same time and in their corresponding dynamic range. RESULTS: Using Sars-CoV-2 infection as a model, it has been possible to profile different patterns of acute phase proteins that vary significantly between healthy and infected patients. In addition, severity profiles (acute respiratory distress syndrome and sepsis) have been established. CONCLUSIONS AND CLINICAL RELEVANCE: Differential profiles in acute phase proteins can serve as a diagnostic and prognostic tool, among patient stratification. The design of this new platform for their simultaneous detection paves the way for them to be more extensive use in clinical practice.


Subject(s)
Acute-Phase Proteins , Acute-Phase Reaction , COVID-19 , SARS-CoV-2 , Humans , Acute-Phase Proteins/analysis , COVID-19/blood , COVID-19/diagnosis , Proteomics , Acute-Phase Reaction/blood , Acute-Phase Reaction/diagnosis , Acute-Phase Reaction/virology
2.
Front Immunol ; 12: 771609, 2021.
Article in English | MEDLINE | ID: covidwho-1551509

ABSTRACT

An excessive inflammatory response to SARS-CoV-2 is thought to be a major cause of disease severity and mortality in patients with COVID-19. Longitudinal analysis of cytokine release can expand our understanding of the initial stages of disease development and help to identify early markers serving as predictors of disease severity. In this study, we performed a comprehensive analysis of 46 cytokines (including chemokines and growth factors) in the peripheral blood of a large cohort of COVID-19 patients (n=444). The patients were classified into five severity groups. Longitudinal analysis of all patients revealed two groups of cytokines, characterizing the "early" and "late" stages of the disease course and the switch between type 1 and type 2 immunity. We found significantly increased levels of cytokines associated with different severities of COVID-19, and levels of some cytokines were significantly higher during the first three days from symptom onset (DfSO) in patients who eventually required intensive care unit (ICU) therapy. Additionally, we identified nine cytokines, TNF-α, IL-10, MIG, IL-6, IP-10, M-CSF, G-CSF, GM-CSF, and IFN-α2, that can be used as good predictors of ICU requirement at 4-6 DfSO.


Subject(s)
Antibodies, Viral/blood , COVID-19/mortality , Cytokine Release Syndrome/blood , Cytokines/blood , SARS-CoV-2/immunology , Severity of Illness Index , Acute-Phase Reaction/blood , Antibodies, Viral/immunology , COVID-19/pathology , Critical Care/statistics & numerical data , Cytokine Release Syndrome/pathology , Female , Humans , Immunoglobulin A/blood , Immunoglobulin G/blood , Immunoglobulin M/blood , Male , Middle Aged , Prognosis , RNA, Viral/analysis
SELECTION OF CITATIONS
SEARCH DETAIL